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Parametric likelihood inference for record breaking problems

By BRADLEY P. CARLIN
Division of Biostatistics, School of Public Health, University of Minnesota,
Beoz 197 Mayo Memorial Building, Minneapolis, Minnesota 55455-0392, U.S.A.

~ AND ALAN E. GELFAND
Department of Statistics, University of Connecticut,
Buz U-120, Storrs, Connecticut 06269-3120, U.S.A.

Summary

In this paper we consider the analysis of fecord reaking da.fasets, where only observations
timt exceed (or only tiloue that fall below) the cunenT extreme value are recorded. Examples of
.a.pplica.ti-on areas leading to da.t; of this type indude. iidustria.l stress testing, meteorological anal-
ysis, sporting and athletic events, and' oil and mining mL.rveyQ.’ The inherent missing data structufé
Present in such problems leads to likelihood functions that contain possibly high-dimensional inte-
grals, thus mndeﬁng traditional maximum likelihood inethods difficult or infeasible. Fortunately,

we may obtain arbitrarily accurate approximations to the likelihood function by iteratively apply-

ing Monte Carlo integration methods (Geyer and Thompson, 1992). Subiteration using the Gibbs
sampler may help to evaluate any multivariate integrals encountered during this process. This ap-
proach enables a far more sophisticated set of paramet‘ric models than have been applied previously
in record breaking contexts. In particular, we illustrate the methodology for a wide array of discrete
and continuous distributional setiings, and for observations that may be correlated and subject to
mean shifts over time. Related issues in model selection and prediction are also addressed. Finally,
we present two numerical examples. The first uses a génerated dataset exhibiting a high degrée of

autocorrelation, while the second involves records in Olympic high jump competition.

Some key words: Gibbs sampler; Missing data; Moxzte Carlo ipproximant.




1 Introd'uctionv

The subject of this paper is estim’.ation and prediction in context; where data points accumulate
oequentially over time, but only those that blreali the current record {i.e., represent a ﬁew maximum
or minimum value) are observed. Data of this type arise in a wide‘ variety of practical situations.
The ﬁistory of achievement in sportiﬁg and athletic events (such as the times required to run one
inile, or top land speeds) is often recorded only iln record breaking fomat. In metéofoloéy, record
high temperat;lres or water levgls are sometimes all that aze avﬁilable for a given location. In
industrial stress tesi%ing, 3 ma}nufa.cturer will typically test a series of finished products only up to
the current ot .ved minimum strength, .rather than simply iﬁaea;ing tixe pressure on each item
until it breéh. Data of this type are dosely ?ela.ted to what might be caﬁe& threshold data, where
only observations that exceed (or only those that fall below) ; certain levd are observéd. Exmples
of this situation include studies of publication bias, drug effectiveness, and patient monitoring in
which a physician only sees a patient when the latter is (or belie?es he is) ill .enough to justify the
~ visit.

D{tuets of this g.enera.lb class can take many different férms, each requiring its own probability
model. Record brea.ki#g opportunities may arise in a syute@atic way>(a.s in an annual auto race) or
completel! alt random (as in a new record for the number of college students in a single phoue booth).
The/fdi;zixer situation seems to call for a discrete time stochastic model; the latter, a continuous
time inodel (although here we might also group the events into cc;nvenient time blo&s and treat
the result as a discrete tige series). Another distinction involves whether we hav.e information -
concerning the failed record breaking attempts or not. In some discrete time settings, we will have
such auxiliary information (e.g., for an annual race), but not in most continuous time‘setti.ngs.

Given the form of the dataset in hand, we must adopt realistic assumptions concerning the




nature of the process creating the record breaking attempts. In particular, the assumptions of

independence and a constant mean for the sequence giving rise to the records may or may not
be appropriate. For example, independence may be reasonable for fhe sequencé leading to record
values in destructive str;zss testing, but not for weekly financial records. When the assumption
of independence is notl wém-a.nted, w;a may wish tbk a.dbpt a Markovian dependence structure, but
in some cases even this will be too restrictive. Concerning the constant mean hypothesis, records
arising from an experienced player’s scores in a card game are not likely to shift over time, but

we would expect such a shift in most athletic competitions due to improvements in eauipmeat,

. nutrition, conditioning, .prepara.tion, and heredity (bearing out the old sports adage, “records were

made to be broken”).

While there is a la.rge“amount of literature on the probability mddél.ing of ‘recnrd breaking
data, relatively little exists on the problem of statistical inference in these contexts. Gli& (1978)
contains an excellent review of the pfobabilistic work and a b?ief discussion of tests for randomness

in record breaking sequences. Tryfos and Blackmore (1985) discuss the forecasting of future record

values given only past records, but only in the case of an independent and identically distributed

underlying sequence. Sa.maniego and Whitaker (1986) focus instead on tixe problem of inference on
the underlying model gi.ven the records, but again consider only the irdependent and idéntically
distributed case, dealing primarily with estimating the mean of a single exponential pbp;*’.ation.
In a second paper, Samaniego and Whitaker (1988) adopt the same framework but with only a
nonparametric distributional specification. Smith (1988) retains the independence assumption but

drops that of the constant mean, entert-ining linear, quadratic, and exponential decay mnodels

~ under normal, Gumbel, and generaiized extreme value errors.

In this paper we offer a comnpletely general approach for parametric likelihood inference and

prediction in record breaking contexts. The only requirements for our approach {o be applicable are
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the specification of the joint distribution of the entire data sequence and the index set of the record
breaking observations. The general form of the likelihood to be maximized in record breaking

problems is laid out in Section 2. Section 3 introduces our Monte Carlo computational approach,

and discusses its implementation using Markov chain sampling methods. Section 4 outlines several

specific models for record breaking data, in order to give the reader an idea of the generality of the
methodology. Section 5 gives two numerical examples illustrating our methodology, the first using
an artificial dataset created to exhibit high serial correlation, and the second comprising actual

records in Olympic high jump competition;

2 Record breaking likelihoods

Conceptually, record breaking sequences arise within a chronological sequence of events. For a
sequence of n events we denote the occurence times by {t1,13,...,tn}, and the associated set of

measurements by Y = (Y3,Y3,...,%,). If the events occur regularly, e.g. daily or annually, we can

replace the t's by the index set {1,2,...,n}. As noted in Section 1, our formulation presumes that

within this sequence we see only the record breaking ¥’s, but as a result we aiso know that no

{t1,%3,...,t,} at which records occﬁrred. Thus we assume a total of + fecords within the sequénce
of n eventc, whence Y,; denotes the record value iusociated with s;. Without loss of generality
we assume that larger values break records, ie., Y,, < Y,, < --:- < Y,,. Hence our datasct is
{NM,8,Y.,,393,...,3,Y,,,n00 records after ¢,_}.

-We now turn to the likelihood associated with this data. In the existing literature possibly

inappropriate simplification with regard to the distribution of the Y;’s has been made, e.g. that

they are independent and perhaps identically distributed.‘as well. As suggested in the introduction,'




we suspect that in many cases this may not be so, and hence we only assume that Y has joint
‘d.istributio_n f(y;0), where @ is a vector of unknown parameters. Therefore the‘required likelihood
can be denoted as L(0;¥1,32,..,8¢,%,). Due to the impiicit chronology it seems natural to
calculate this likelihood as
F(0:0) pr(salv1; 0)f(%aa ly1, 22:0) -+ pr(selv1, 82, - - -1 ¥s,,3 6) )
| Xf(y;,hh,.’z,...',Jf;a)}”'(no records after t-,lyhﬁm---.y»;o) s
To obtain expression (1) w= need to compute three types of terms. First consider the term

f(yl,'lyl’ 32». . --v’j;a)' Define the event_ A1 = '{Yn.'+l < Yais: - -:Yl.'-u—l < yc.‘} with 4, = {Yu+1 S

Yspr+++1Yn S ¥, }. Then

P"(Va,_l < Ya,‘ S.c) A11A2,°°'s‘4j—llylni= 11"'rj- lla)
p'r(Yo; > y‘,’-n_ AI)AZ’--'vA.i—llyluiz' 1:"'1j - 1;0)

?"(Ya, < ch’l:‘!v“-r’j;a) =

|

so that, assuming the derivative exists,

f(yljlyl.‘li= lv-'sj- 1;0)pr(A1,A3,...,A;--;Iy,‘.,i = 1,...,j;0)
pr(Y., > Yo Ay, A, ..,A,-_ﬂy,,.,i =1,...,7-1,;0)

f(yo,'lylv"h' -135;0) =

for ys; > y;_,. Similarly, cince s; occurs if and only if both of the events {Ye; > v;} anL Ajq

occur, the conditional probability of s; is

P'(Ylj > VYa;~1y AlvAﬁr"WAj"!ly"’i: 1""’j_ 1;0)
85191282, 21 Yarss 8) = i T
pf( lel 2y 1Y ) pr(Al’Az’_,.,A"_z'y.‘.,‘l‘-'-'1,...,]"1;0)

Lastly,

PT(AI,AZ,---,Arl!h.-,i= 1,...,1‘;0)
Pr(A1, Az, ..., Ay, i=1,...,7;6) "

_ pr(no records after ¢,,|y1,53,..-,%,,;8) =




Assembling these pieces we note that a telescoping of terms arises as we calculate the product in

(1) so that the likelihood simplifies to

=2

.f(yl;O) {ﬁ ."'(‘yl_,'l'.'h.'v“..= l,....0- 1;8)}P'(Al)- --s'Aflyoni = 1,.".',1_;9) . (2)

A moment’s reflection :ei'eals that (2) is, in fact, obvious and might have been written down
directly. _That is, if we let U = (Y,,,...,Y,,), V = Y\U, and we write f(y|8) = f(u,v;0) =

f(u; 8)f(v|u;8), then (2) becomes
f(u;O)pr(VE Blu;8) = _/sf(u,v;a)dv, _ (3)

where the event {V € B} = {4;,4,,...,4,}.

H Y is a Markov sequence, i e., f(y;6) = f(3,:6) [T3=a f(¥;ly;-1: 6) then (2) simplifies to

j=32 i=1

| r . r=1 ‘
f(n;0) {H F(Ya;1¥05-15 9)} {H Pr(Ajlye;s Yo 0)} pr(Aelyei6) . (4)

In Section 4 we discuss, in some detail, several specific models for (2) and (4).

3 Maximization of the likelihood

The problem we face can be viewed as one of missing data. Had we observed the v's we ivould
have faced a standard problem, namely maximization of f(u,v;8) with réspect to 8. Instead, we
must maximize a likelihood of the form (2). To describe our approach for obtaining the maximum
likelihood estimate of 8, it will be easier to ;vork with the notaticnally simpler form (3). Given the
joint density f(u,v;0) and the ébsemtiom u= uo we need to calculate (3) as a function of 0.

Such a function would almost never be available expticitly since it requires an (n — r)-dimensional
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" integration over a constra.ined regiop. In general ‘n.. ~ r will be large and such integration will defy
exact or approximate calculation unless the Y, zre independent, in which case we obtain n — r
one-dimensional integrals.

_ As a resu.lt, we are drawn to Monte Carlo approaches for i:a.rrying out the integration. In prin-
ciple, one could attempt z grid search for the maximizing @, pen'ormix;g a Monte Carlc integration
of (3) at each given 0. If the dimension of 8 is at all large such searching will be impractizal; even -
for low-dimensional 8 the method we now proéose will be much faster. o |

6ur objective is to create a Monte Carlo apyproximant for (3) and éubsequently maximize the -
rel‘ulting approximate likelihood. An additional iterative step insures that the likelihood itself
is gna.ximized. We obtain our approximant usmg ideas in Geyer and Thompson (1992) a.nd the
associated discussion by Gelfand (1932). Observe that we can write |

Jy feworvieyay = { [ stuo,vi0u)av}{ | SN stvtue; Gurav}{ [ sevives AT
Thus if v}, j = 1,...,M are drawn from g(v|ug;6), the conditioﬁa,l distribution of V given up

and 8 restricted-to B, a Monte Carlo approximant for (5) is given by

f(uo. )

- /f(“on' Bo)dv X MZm ‘ (6) |

e §=2

Since the integrai in this expression is free of 8, an approximate maximum ﬁkelihood estimate'is
obtained by maximizing the summation in (6) with respect to 8. If f(u;8) is available explicitly so
that f(v|u;60) = f(u,v;0)/f(u;6) is as well, the approximaxt iu (6) can be written equivalently
] ‘

f(n;0) x = ’Z_; ff((vv‘llu'n:.eo) (M




Expression &) ﬁu computational a.dv?.uta.gés over (6) under, for example, : “arkovian assuxﬁptfon,
and is used in the exé.mples in Section 5.

A natural questioa to ask is how to draw samples from g(v|uo; 8o). In spacial cases, such as mul- |
tivariate normal models, f(v|ug; @) will be a standard distribution so that g could be sampled by.
simple rejection,‘ ie., reta.iring v: dra.wp‘from f(vluo;. 8o) if and only if it belongs to B. Such sam-
pling will generally be very inefficient, hoWeve;. An attractive alternative for general f is Markov
chain Mopte Carlo using the Gibbs sampler (see e.g. Gelfand and Smith, 1990). Implementation re-
quires sampling from the complete conditional distributions arising from v, all of which are propor-
tional to the known joint density . f(u,v;6). In pa..rticular' if we write V = (V;, V(_;)) then we need

.to sample fiom f(v.-IV(_,;), ug; O) restricted to a half interval. If we amploy a Metropolis-witlﬁn-
Gibbs algorithm (Miller, 1992) these draws can be ma.de’from trﬁnca.ted standard distribufions.
" Such draws may be accompl‘shed using a method suggested in ‘Devroye (1986, p. 38).

Geyer and Thompson (1992) observe that there is gain in iterating tke approach. More precisely,
starting at some 8, if we meximize (6) to obtain 9, then we can set 8; = 0, redo the maximization _
resulting in a new 8, set 8, equal to this new value, and so on. The objective of this itera.tion is to
insure a good Monte Carlo approximant. In practice a few iterations obtain 6; in the vicinity of the
true 8. At this point, one fina! iteration with M very large will produce an accurate final estimate.
A byproduct qf this approach is the possibility of approximating the asymptotic cova.ri#nce of the
maximum likelihood estireator. Tc do so requires calenlation (either analytically or numerically) of
the Hessian matrix from (6) or (7) at §. We do this in conjunction with our examples in Section 5.

‘We note that theoretical concerns associated with maximum likelihood estimation, regarding,
e.g., existence, uniqueness, consistency, and asymptotic norma.lit&, have not beexi addressed herein.
The assumption is that the likelihood under consideration is reasonsbly well behaved. Remedies

for poorly behaved likelihoods are well discussed in the literature and apply here as well.




4 .Speciﬁc modéls
4.1 Overview
The Monte Carlo approximant a.ppfoa.ch of the érevious section demonstrates that, under almost
any parameiric joint dénsity for Y, maximum likelihood estimation given a record breaking sequence '
can, m pﬁnciple, be carried out. The goal of this section is to explore more speciﬁc models that
facilitate calculations and are mativated by the chronological nature of the record breaking process.
Rather than attempt any fomaﬁzaﬁon we illustrate with three examples. The firct two are fairly

general, whiie the third assumes a Markov Gaussian model. .

4,2:' Conditionally indepehdent hierarchical models

Suppose that f(y;0) arices as f(y;0) = [ f(ylz; ¥) f(z; 1)dz, where 8 = (%, 1)). We a;ssume :
that f(z;n) is a proper density over the domain Z of z so that f(y; ) is proper, and that given z, thé
Y’s are indeéenden‘.. Distributional classes of this type have been called c;)nditionally independent
hierarchical models (Kass and Steffey, 1989) and offer a rich modeiiﬁg ﬁ-améwﬁrk. If we define
hi(z:%) = E(Yilz: %) then E(Y;) = E(k;) and cou(¥,¥;) = eou(hs, h;). Thus appropriate choice

of f(ylz; %) and f(z;n) can be made to yield derired model behavior.

If f(ylz; ¥) and f(2; n) form a conjugate pﬁr, marginalization over z will readily provide f(y; 6) |
and we may proceed as in Sec...n 3. If explicit marginalization is not possible, how can we obtain

a Moante Carlo approximant to (3)? "We can write

‘/Bf(uo.‘r;f?)fl‘v = { fB f(uo,V;Oo)dv}

, J(uo, viz; %) f(z; n) ) ) ..
{[ Froe BB (v, o) (ol o) o |

<{/ jz FvTucy i o) ol b (o mo)dadv} . (8)




The assumed conditional independence insures that all conditional densities in (8) can be written
down immediately. Sup; VhEhi=1..., M } are drawn from the density proportional to
F(viuo, z; ¥5) f(uol2; 1) f(2; M) restricted to B x 2. Then an approxima.nt to (8) is given by

Ho,v3le ) f(asin)
JyHtorvioody x g "oy Tl V3123 o) 23 70) ®

J"l

which is a minor extension of eqna.tionv(s)'. The re;;uirled sampling of v and z over B x Z may
be ca.med out by extending the Gibbs sampler as follow;. Given z draw V from f(vluo,z'il’o)
sestricted to B using the complete conditional dmtnbutnons for V;, which are free of uo and V(_,)
arder condmona.l mdependence Given v draw Z using the complete cond:txonals for the Z., wlnch
are proportional to the nonnormalized form f(v|uo, Z; ¥o)f(wolz; ¥o)f(2; 10). The Z; aze treated

as missing data, just like the V;.

4.3 Moving window sum processes

A natural extension of the case of independent ¥;'s is to envision them arising as observations
from a moving window sum of independent variables. We 'ili'ustrate for a window of size two.
Suppose that‘Zo, Z;i,...,2y are independent with 2; ~ f.( -.;9). Let Y; = Z; + Z;—1. Then the
joint distribution of Y can be strdghﬁoMﬂy written Jown. Moreover E(Y,) = E(Z;)+ E(Z;1)
and cov(Y;_1,Y;) = var(Z;_,), so that appropriate chqices of the f; will provide desired model
behavior. | |

As a concrete example, suppose a new species is introduced into an area and thereafter seasonal
' population counts are of interest but, in fact, over the course of say n @om only the record
breaking seasons and connts are recorded. Typically such counts are modeled as Poisson variates,

but here it might be inappropriate to assume they are independent. Suppose we let Z; be inde--
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pendent Poissoﬁ(/\") random variables for ¢ = 0,1,...,n and set Y; = Z, + Z;.,. Then dearly

Yi~ Pf""-_’-im(f\. + i), cov(Y;, Yiny) = Aoy, and E(Y(]Y) = A+ A Y01 /(Aio1 + Mi-a), linear
in Y;_;. To create a drift in E‘Y,) we could take the ), to be specified parametric functions. If A

is linear in 1, we have E(Y;) linear in i; if ), is exponential in i, then log E(Y;) is linéa.; in 1.

4.4 Markov Gaussian models

A Markovian assumption for a record ‘brea.ki.ng sequence seems a plausible yet relatively sim-
ple extension from independence. Recall that under such an assumption the likelihood simpli-
fies & bit as in expression (4). In puficular suppose that all marginal and conditional densi-

ties from f(y;0) can be obtained explicitly, as in the case of f(y; @) multivariate normal. Let

Wi = (Yat1s-onYu-1)r § = 1,...,7 = 1, a0d W, = (Y,,41,...,Ya). Then the W; are con
ditionally independent given u yielding (4). Since pr(V € B|uy,8) can be written as ; product
of r terms, an approximant for each term can be c_reated using low-dimensional Gibbs samplers
or some other numerical integration t.echlnique, rather than requiring one fully (n — r)-dimensional

sampler. Expreuibn (7) would be recast as & product of sums utilizing the conditional distributicus

f(wilug;8), s=1,...,r.

Suppose, inrf;ct, that e;entl occur at regulax' in;Qr;tals> md the process is ﬁrlt order Wéianssia.n,
ie. Yi — i = p(Yic1 — thi—1) + ¢ where ¢ ~ N(0,0%) and p; = E(Y;)is a lpé&ﬁed parametric
function. As in the previous exampfe the u, can reflect drift; for instance, u; = a + fi is uzed iﬁ
the exuﬁples of Section 5. Clearly var(Y;) = 02/(1-p?) and cov(Y.-,YH,-)I = qépf /(1-p%). Such a
model extends Smith (1988) and yields routine distribution theory. Alternatively, Markov Gaussian
models may be created through the inverse covariance matrix. Whittaker (1990, Chapters 5 and
~ 6) presents a very readable discussion of this approach. In\puticulu he shows that if only the

diagonal and first off-diagonal terms in the inverse of the covariance matrix are nonzero, then the
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joint distribution is a Markov Gaussian model.

A generaﬁzatioﬁ in the spirit of Subsection 4.2 assumes that the y; are random. The idea
is tha.f randomly arising larger p.. will encourage the vreaking of records. If so then we might
- write the model in hierarchical form as f(y|u;p,?)f(u;n). Note however that we do not have a
conditionally inciependent hicrarchical model. An illustration yvould be the first ofder dyﬁamic, or
state-si;ace, model (see e.g. Carlin, Polson and Stoffer, 1992). If we can explicitly marginalize over
» v;e will find ourselves with a Markov Gaussian model aga.in.' If_not‘, we can &eafe an approximant
| similar to (9). |

A final related point here concerns the extension of guch models toa r.oﬁtinuous time process |
{Y'(t) : t > 0}, where events occur at times ¢;,...,#, resulting in Y(t,),...,Y(¢t,). Here a standard
theorem in stochastic processes (;ee e.g. Breiman, 1986, p. 289) notés that a Gaussian statioﬁa.ry

“process is Markov if and only if its autocovariance function I'(t) is of the form 671, 0 <7< 1. In

other words, the only stationary Markov Gaussian process is of the form we have just describad.

5 Numerical examples

- 5.1 Simulated high correlation data

To illustrate the performance of the methodology for record breaking data exhibiting high
autocorrelation, consider the n = 50 simulated ¥; values given in ‘Table 1. These data were generated
according to the linear first order Gaussian model intzcdiced in Subsection 4.4, where we let a = 0,
B=1,0=14,p=08, and set y; = 1. The y; values are displayed graphically as dots in Figure
1(a); the r = 34 record breaking observations are boxed for easier identification. Fitting a simple
linear regression model to the full 50-point dataset, we see in Figure 1(b) the wave pattern often
presect in the residual plot for serially correlated data, and a clear positive trend in the plot of

each residual versus the immediately preceeding residual in Figure 1(c). Beth of these diagnostics
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suggest high positive correlation for our generated dataset.

i+ mnorecord i mnorecord ¥ i norecord ¥ i norecord

1 1.00 |13 1481 ] 26 * 27.711 | 39 41.69
2 1.02 | 14 19.14 | 27 * 28.44 | 40 41.81
3 1.18 | 15 21.59 | 28 * 28.41 | 41 41.85
4 307 |16 2363[29 30.06 | 42 43.63
5 532 |17 02449130 31.08 | 43 43.73
6 * 367 |18 25.01 | 31 . 33.68 | 44 47.70
7 * 422119 * 24.85 | 32 34.58 | 45 47.92
8 8.55 | 20 * 23.12 | 33 * 33.08 | 46 49.37
9 * 8.50 | 21 * 24.95 | 34 * 30.19 | 47 52.01
10 9.37 |22 L 24.83 | 35 * 31.40 | 48 53.25
11 10.95 | 23 2593 | 36 * 33.00 | 49 56.84
12 12.33 | 24 28.85 | 37 35.72 | 50 * 5492

2% 28.50 | 38. % 35.73

Table 1: Simulated data having p = 0.8

The magnitule of the Pearson cone!;tion present in the la.gged residual plot, 0.83, indicates
the severity of the autocoﬁdation, but its value is a bit misleading since this statistic does not
actually estimate the parameter p in an AR(1) model with a time trend. Instead, we might iook
at the differenced series Dy = Y; - Y3, t = 2,...,50, and observé that var(D;) = 20%/(1 + p)
and cov(Dy, De—y) = —[o3(1 - p)}/(1 + p), 8o that corr(Dy, Dy;) = —(1 - p)/2. Hence if C is
the sample estimate of this correlation, we obtain the crude point estimator 5 = 1 + min(0,2C).
Figure 1(d) plots the (Dy, D;—;) pairs for our dataset; the resulting 5 equals 0.901. Thus we have
substantial evidence that a model incorporating p will substantially improve our inference.

Of course, our models will not analyze the full data as above, but only the 68% of the data that
constitute record breaking observations. Notice that there are three gaps of length four (i = 19-22,
25-28, and 33-36), one gap of length two (i = 6-7), and twc; gaps of length one (i = 9 and 50).
We will use our Monte Carlo algorithm to find the maximum likelihood estimate of 8 = (a, 8, 0, p)

given the observed data up = (yuy,..., %, ). We will compare the fit of this model to that of a
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reduced model where we ignore autocorrelation by insisting that p = 0.

Using notation suggested in Subsection 4.4, we write w; = (ﬁs,yv)' , W2 = (the, Y20, ¥21, ¥22)

w3 = {y25, Y26, Va7, v28)’, and w4 = (¥a3, Y34, Y35, ¥36)', 80 that v = (ys, yso, W1, W3, w3, wy)'. Then

the Likelihood (4) for our dataset takes the form

L(6; o) = f(116) {I'I’§=z F (35130513 8)} { /2% 1 (v6lv8, 10; 0)dua } { 14, F(vsolas; O)dyso}
ox I, f(walys, ve: 0)dwn } {18 2 [0 [ f(weluie, yasi 6)dws )
X {7 5 525 122 £(alyas,vaos O)dwa } {25 [ [¥2 [¥2 f(walysa, vor; O)dwa)

Since we have assumed a first order iinear Gaussian model, the distribution for each observed record
given .‘.hg one immed.i&tely breceding, (¥, (¥5i-y 3 0), is readily availzble from standar& multivariate
nomd theory. Similarly, the required conditi‘o’na.l distributions for the gaps yo, ¥s0, W1, W2, W3 and
wq are also available as normals, complc.":i‘ng the likelihood specification. Thus a Monte Carlo
;pprc;ximant of the form in (7) with the Markovian ﬁmpliﬁcations discus;ed in Subsecticn 4.4 is
convenient.

To carry o.ut the required v; sampling, we first note that yg; and ﬁ;o J values may be generated
directly from their (suitably trﬁncated) complete conditional distributions, obfa.ined from standard

multivariate normal theory as

f(volys, 410; 8) x N(ps,03/(1+ p*)) M= oo n)(t6), and 10

f(vsolvus; @) o N(pso,0%) (- c0,440)(¥50),

where po =a+ 98 + 1—_% (n:%m. - - Qﬁ) and puso = a + 508 + p(yue — @ — 496). For the
migsing data lyii}g in gaps of length greater than 1, however, we resort to Markov chain Monte

Carlo methods to obtain the necessary samples. For each such missing y;, the complets conditional
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density to be used for generation of the y,’s is of the form

f(!lil!l-’-n!liﬂi 0) “ N(p,‘,d’/(l + Pz))j(-m,y,i_l)(yi)) | - (11)

where y; = a+ fi+ i'%%’ (k‘—}uﬁ -a- ﬁi) y Vs, is the most recent record value, and it

is understood that either or both of the conditioning values y;-; and y;4; may themselves be

Monte Carlo samples if they too correspond to non-record values. In our implementation, we ran .

M parallel sampling chains for N “burn-in” iteratious to reach the chain’s ergodic distribution,

 retaining only the N** value from each chain. While somewhat wasteful, this approach was an easy-

way to obiain independent iterates in a situation where the required generation was inexpensive.

We took N = 20, a conservative burn-in value based on our experience with normal sampling'

model's. In less regular modeling scenarios, a monitoring diagnostic may help select the proper
value of N . 'Under the parallel sampling approach, the recent bapérs by Gelman and Rubin (1992.),
Ritter and Tanner (1992), and Roberts (1992) are particularly helpful in this regard.

| Given the sampled values {v} = (¥3;, V8o,j» Wij» W3;» W3, W4;), J = 1,..., M}, the Monte C?n‘lo
approvimant (7) is easily computed. As mentioned in Section 3, ou-r algorithm uses a small number
of iterations to update this 8y value before the final ma.ximiz‘atioﬁ. Our program was writfen in
FORTRAN and called the IMSL routine DBCONF, a quasi-Néwton algorithm employing a finite
difference gradient, to perform the necessary maximizations.

Using M = 10, 000 replications on the third and final iteration of the algorithm we obtained the
full model maximum likelihood estimate & = (-0.008,1.073,1.706,0.786). A nmeﬂcaﬂy computéd
Hessian produced the asymptotic standard deviation vector (2.001, 0.068, 0.220, 0.091); tﬁe esti-
mated correlations between the elements of § were all negligible with the ex;eption of that between

& and f, -0.85. Fitting the simple trended AR(1) model to the entire set of n = 50 observations
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results in the point estimate (0.208, 1.068, 1.632, 0.819) and associated standard deviation vector

(2.165, 0.072, 0.168, 0.078). The estixﬁation that uses record data only appears to be degraded very
little, déspite the loss of nearly one third of the observations. |

Repeating the algorithm using the sa:_ﬁé ﬁumber of iterationé and replications for the reduced
model (p = 0) gave @ = —0 106, § = 1,'05_5, agd = 3.643. Figure l(a) shows that thg treﬁd lines
obtained from the full and reduced models é.re virtually _indistinguishable. Still, the x? likelihood
ratio statistic equals 36.76 on 1 degree of freedom, and this in turns lea.ds to an Akaike information
criterion of 35.76 and a Bayesian inforﬁation (Schwarz) criterion of 35.23 - the latter suggesting a
Bayes factor in favor of the fu]li mode! of over 16 m.illio#! |

Clearly all of the above model ch;aice criteria confirm that the full model is'va.stly superior, bﬁt

apparently its value lies primarily in its increased precision, indicated by its much smaller & value.

~ Since this added precision should translate into better predictive; ability, we decided to investigate

further using a bootstrap approach. We drew y3, ;, . . ., ¥go,; from the fitted full and reduced models

for j.=1,...,2000, being careful to constrain yg, ; to be less than yyg, as was observed in the original

- dataset. Figure 2(a) then plots the 5¢4, 50t* and 95* percentiles of the bootstrap distribution over

time. We see that the full model is indeed more precise, though its advantage gra.dii}lly diminishes.

‘The full model expects slightly larger future observations oa the avreréét;r(’l;erto the recent history i

of records at y37 through y49. The compression of the 954 percentile for y2, 4 i8 apparently due to
the restriction that it not exceed y49 — an extra bit of information not usually available iv a truly
predictive setting.

Finally, Figure 2(b) gives the histogram of the bootstrap distribution of the waiting time until

the first record after y49 under the full model. Counting the known non-record value at ¢ = 50, vthe '

model suggests substantial probabilities of gaps of length 4 or 5, and a nonnegligible chance of a

gap as long as 10 time points. Again, this behavior is understanda.blé in light of the high estimated
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autocnrrelation combined with the long string of records receatly observed to have ended; indeed,

such gaps have occurred in our sample.

5.2 Olympic high jump data

As a second illustration, consider the data displayed in Table 2. These are the record breaking
Olympic high jumps since 1896, as presented in fhe World Almanac and Book of Facts (1989).
Besides being a prototype for many sports history datasets of this type, this dataset is interesting

because it contains two distinct types of missing data. First, no record breaking high jump occurred

. at the Olympics in the years 1904, 1920, 1928, 1932, 1948, 1972, and 1984. Second, no record

occurred in the years 1916, 1940, and 1944 because the Olympics themaselves were cancelled due to

the intervening world wars. Our likelihood must reflect this distinction between the failures and

. the cancellations.

J__8; | year - record (in.) | athlete (country)

1 1[1806  71.25 | Ellery Clark (US)

2 2[1900 7480 | Irwing Baxter (US)

3 4 |1908 75.00 Harry Porter (US)

4 5 (1912  76.00 ' | Alma Richards (US)

5 8 |1924 78.00 Harold Osborn (US)

6 111936 80.00 Cornelius Johnson (US)

7 151952  80.32 | Walter Davis (US)

8 16[1956  83.50 | Charles Dumas (US)

9 171960 85.00 Robert Shavlakadze (USSR)
10 18 | 1964 85.75 Valery Brumel (USSR)

11 191968  88.25 | Dick Fosbury (US)

12 21 | 1976 88.50 Jacek Wszoia (Poland)

13 221980 92.75 Gerd Wessig (E. Germany)
14 24 {1988 93.50 Guennadi Avdeenko (USSR)

~ Table 2: Olympic High Jump Records, 1896-1988

Since world-class athletes typically compete in more than one year's Olympics, and perhaps

since the athletes of a few countries seem to dominate this event, we might wish to fit a model

%
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for dependent data. With r = 14 broken ‘x.'ecords in only 21 Olympié attempts, there is.a.lso a
clear need to model an increasing mean over time. Because this is again a discrete time dataset,
we shall attempt to fit the‘ normal linear AR(1) model presented in Subééction 4.4. For sirﬁplicity
we let 4, = a + fi = a + f(year — 1892)/4, and investigate the distributidn of the waiting time
until the next record. Basak and Bagchi (1990) used Laplace’s method to 'éstimate the predictive
distribution of the magnitude of the next record given the 14 record.s. in this dataset, but fit only
a simple model that assﬁmed uncorrelated observaticns havingv a conétaﬁt mean over time. Their

analysis also ignored the failures and cancellations, and thus discarded the information carried by

the failed attempts. Under this model the cancellations may be ighoréd, since they cannot be

connected to any observed data and thus do not affect the erlihood. ‘ 7

Writing w = (y9, ¥10)’ 80 that v = (y3, Y20, ¥23, ¥7, Y14, W’)’, the likglihoo& is given by

L(8; wo) = £(31;0) {[Tja S (vasl3e;-030)} {Tiem S25" £(3slyi-1,v541: O)dys}
x {1, f(yrlys, vo: )dyr} {I% Flgralynn, si )y} {2, S5 F(wlys, v12; O)dw}

where F; = {3,20,23}. All of the distributions in this expression are available as univariate normals,

"except for the bivariate normal distribution of w.

Turning 7tc>" our;a.mﬁrlri'ngi-b‘aa'ed impiemeh;afion, ‘:'e"a'g;n' work with expressiox; (7), which re-
quires simulated y;; values for thé seven observed failures. Except for the back-to-back failures in
1928 and 1932, all of these represent gaps of length 1 and thus may be éenerated without the use of
Gibbs sampling from completebcénditiona.l distributions similar to those ‘d.isplayed in equation (10).
Of course when one of these failures abuts a cancellation (as in 1920 and 1948), there are slight
modifications to the mean and Muce to reflect the fact that the adjacent record is more than one
position away, but the a.ssocié.ted conditicnal normal calculations are still routine. For the single

gap of length two, we used the Gibbs sampler with N = 20 to obtain Yg; and ¥ ; values generated
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from éomplete conditionals of the form given in equation (11). No modifications are nzeded in this

case as both ﬁg and y;; are observed records.

Once in possession of the sampled values {v; = (33, Y303, ¥33,» Vi Yiap Wi 7 = 1,..., M}

we may evaluate the Monte Carlo apprm‘dmaht to the likelihood (7), which is again routine

using multivariate normal theory. Genexfating M = 10,000 replications at the final itei'ation,
this dataset l;eguired only N = 3 iterations to produce the mmmum likelihood estimate 9 =
(70.037,0.894, 1.697,0.334), withAassocia.'ted asympgotic standard deviation vector (1.384, 0.084,
0.368, 0.372). Appe;ling to the asymptotic normality of the maximum likelihood estimator, the
data strongiy s.uggest an increase of n;aarly 1 inch in the best Olympic high jump every four years,
but offer oniy mild evidence of a positive correlation amongst these 'quadrennia.} performances. Re-
pe;ting the calculations for the reduced model havihgv p= Q, we obta.ined @ = 70.072, § = 0.881,
a.nd. &= 1.#69, estimates which show little movement from those in the full model. The single
degree of f;eedém x2 likelihood ratio statistic between these two models is 1.91, implying a p-value
of 0.168. The Akuike criterion is 0.91 (a slight preference for the full model) whilé the Schwarz
&iterion is -0.73, for an approximate Bayes factor of 0694 = 1/1.44 (a liight preferen’ce for the

reduced model). Thus the data are inconclusive on tae issue of whether to include p in the model

or not.

Fig'urg 3(a) addresses the prediction question, again tiu‘ouéh a bootstrapping approach. Wkile
the fitted full model has been used in this analysis, the near linearity of all threé lines in this plot
indicates only a small gain in predictive precisioq over wh;t might. be expected from the simple
uncorrelated ﬁmdel. Finally, Figure 3(b) shows a ;xea.rly linear decline in the probabilities of the
waiting time distribution, with a new record almost certain to have occurred within the next five
Olympic meets. The 37% predicted chance of a record-breaking high jump at the 1992 Olympics

seems consistent with the overall observed proportion of records in back-to-back competitions.
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Summary

In this paper we consider the analysis of record breaking datasets, where only observations

that exceed (or only those that fall below) the current extreme value are recorded." Examples of
application areas leading to data of this type include industrial stress testing, meteorological anal-
ysis, sporting and athletic events, and oil and mining surveys. The inherent missing data structure

present in such problems leads to likelihood functions that contain possibly high-dimensional inte-

e

grals, thus rendering traditional maximum likelihood methods difficult or infeasible. Fortunately,

we may obtain arbitrarily accurate apﬁroximations to the likelihood function by iteratively apply-
ing Monte Carlo integration methods (Geyer and Thompson, 1992). Subiteration using the Gibbs

sampler may help to evaluate any multivariate integrals encountered during this process. This ap-
proach enables a far more s'ophisticated set of parametric models than have been applied previously

in record breaking contexts. In particular, we illustrate the methodology for a wide array of discrete

and continuous distributional settings, and for observations that may be correlated and aﬁb ject to
mean shifts over time. Relatéd issues in model selection and prediction are also addressed. Finally,
we present two numerical examples. The first uses a generated dataset exhibiting a high degree of
autocorrelation, ;vhile the second involves records in Olympic high j

p competition.
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